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Tutorial

Ecological momentary assessment (EMA; also variously 
called “experience sampling” or “ambulatory assess-
ment”) refers to study designs that repeatedly collect 
data from participants in real time in their natural envi-
ronment. For example, participants might respond to 
five short surveys throughout the day for 30 consecutive 
days. In recent years, EMA designs have become popular 
in various areas of psychology (e.g., cognitive psychol-
ogy: Crawford et  al., 2022; social psychology: Depow 
et al., 2021; work psychology: Dora et al., 2021; clinical 
psychology: Fried et al., 2022). One key advantage of 
EMA is its ability to capture complex and fine-grained 
temporal associations between psychological phenom-
ena (e.g., thoughts, feelings, and behaviors), which 

allows researchers to harmonize theoretical and statisti-
cal models (Kaurin et al., 2023). Another advantage is 
EMA’s potential for improved causal inference (Hamaker 
et al., 2020). EMA also maximizes ecological validity and 
minimizes recall bias (Hektner et al., 2007; Moskowitz 
& Young, 2006; Piasecki, 2019; Shiffman, 2009; Shiffman 
et al., 2008). Since the smartphone has become ubiqui-
tous, the prevalence of EMA research is increasing rap-
idly compared with other research designs, and the 
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Abstract
In this tutorial, we introduce the reader to analyzing ecological momentary assessment (EMA) data as applied in 
psychological sciences with the use of Bayesian (generalized) linear mixed-effects models. We discuss practical advantages 
of the Bayesian approach over frequentist methods and conceptual differences. We demonstrate how Bayesian statistics 
can help EMA researchers to (a) incorporate prior knowledge and beliefs in analyses, (b) fit models with a large variety 
of outcome distributions that reflect likely data-generating processes, (c) quantify the uncertainty of effect-size estimates, 
and (d) quantify the evidence for or against an informative hypothesis. We present a workflow for Bayesian analyses 
and provide illustrative examples based on EMA data, which we analyze using (generalized) linear mixed-effects models 
to test whether daily self-control demands predict three different alcohol outcomes. All examples are reproducible, and 
data and code are available at https://osf.io/rh2sw/. Having worked through this tutorial, readers should be able to adopt 
a Bayesian workflow to their own analysis of EMA data.
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method is becoming a common tool for psychological 
research. For instance, Figure 1 illustrates that the num-
ber of published studies using EMA methodology has 
grown exponentially in recent decades, unlike other 
methods such as clinical and randomized controlled tri-
als.1 Although publications on trials increased slowly 
over the past 30 years, EMA studies have increased much 
more rapidly since 2010, demonstrating an increase of 
over 2,000% in the past decade.

Analyzing data from EMA studies involves specific 
challenges. One key challenge is that the assumption of 
independence of observations is violated when each 
participant contributes many (sometimes hundreds of) 
data points. Thus, the repeated observations (e.g., 
responses to a question asking the participants how 
bored they feel at each assessment) are nested in par-
ticipants because responses to this question from the 
same participant tend to be more alike than responses 
from other participants, which is why one cannot treat 
these responses as independent of one another. Some 
EMA designs result in even more complex data  
structures, with additional levels of nesting (e.g., obser-
vations-within-days-within-people or observations-
within-people-within-groups; Stevens et al., 2022). To 
account for this nested data structure, psychologists 
often analyze such data with (generalized) linear mixed-
effects models (Dora, Smith, et al., 2023; Feil et al., 2020; 
Hepp et al., 2017; Howard et al., 2015; Patrick et al., 
2021; Spronken et  al., 2016; van Hooff et  al., 2011), 
which are a type of multilevel model (Pinheiro & Bates, 
2000). A mixed-effects model is essentially an extension 
of a regular regression or analysis-of-variance (ANOVA) 
model and contains both fixed and random effects. 
Fixed effects are factors that are assumed to be constant 

across participants (or other clusters in which data are 
nested), whereas random effects are factors that are 
assumed to vary randomly from one cluster to another. 
In other words, fixed effects are assumed to have a 
systematic influence on the outcome (comparable with 
the parameters in a regular regression or ANOVA 
model), and the model estimates this average effect of 
the fixed factor on the outcome variable. Random 
effects, on the other hand, indicate processes on which 
participants (or other clusters) differ from each other in 
meaningful ways and that cannot be easily modeled 
with the group-level average. In mixed-effects models, 
random effects can also estimate variability in the fixed 
effects, which estimate how the fixed effects vary from 
one cluster to another. For example, a random intercept 
can reflect that some participants might score higher or 
lower on the outcome variable on average, and a ran-
dom slope can reflect that for some participants, the 
association between predictor and outcome might be 
stronger or weaker.

Why a Tutorial on Bayesian Analysis  
of EMA Data?

To date, the vast majority of EMA research has relied on 
frequentist methods, which use maximum likelihood to 
estimate model parameters and commonly use p values 
for inference. In Psychological Science, for example, 
more than 95% of EMA studies published between 2011 
and 2021 used such approaches.2 Setting aside differ-
ences in inferences (which we return to below), the 
frequentist approach has a few practical limitations that 
might make it suboptimal for many EMA data-analysis 
projects. First, a major practical disadvantage of frequen-
tist mixed-effects models is that they often fail to con-
verge when there is too little variability in one part of 
the model (e.g., almost no variability in an EMA item 
over time; McCoach et al., 2018). As a result, researchers 
often have to adjust their statistical model post hoc and 
cannot include all random effects that they would like 
to include in their mixed-effects models. Often, method 
sections of EMA articles state that the authors wished to 
include a random slope to account for variability between 
participants in the strength of the association between 
predictor and outcome but that they had to remove this 
parameter to get the model to converge. This is espe-
cially relevant when analyzing EMA data because the 
testing of cross-level interactions (i.e., interaction effects 
between levels of nesting, which are common in EMA 
studies) necessitates modeling of a random slope of the 
lower-level variable (e.g., observations within individu-
als; Heisig & Schaeffer, 2019). Cross-level interactions 
are often of theoretical interest in EMA research because 
they model how processes that unfold within people 
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Fig. 1. The ratio of yearly number of articles indexed in PubMed 
that reference “ecological momentary assessment” compared against 
“clinical trial” and “randomized controlled trial” between 1990 and 
2021 (each scaled to their own maximum).
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(e.g., the association between feeling bored and drinking 
alcohol later that day) are affected by features that differ 
between people (e.g., people’s personality or environ-
ment). Having to adjust a model after seeing the data is 
undesirable from an Open Science perspective, in which 
researchers would prefer not to diverge from their pre-
registration if possible (Nosek et al., 2018).

A second practical disadvantage is that available fre-
quentist software packages cannot accommodate the full 
range of models commonly needed for EMA research. 
For example, the R package nlme (Pinheiro, 2010) can 
fit only linear models, but it can model different struc-
tures in the residuals such as autocorrelation and het-
eroskedasticity. The R package lme4 (Bates, Maechler, 
et al., 2015) cannot model residual structures but can 
handle some nonnormal outcomes via the glmer or 
glmer.nb command. However, even lme4 cannot model 
zero-inflated or hurdle-count outcomes or other nonlin-
ear options. Additional frequentist options are available 
(e.g., glmmTMB; Magnusson et al., 2017), but the cost 
of changing packages (and their associated estimators, 
syntax, and troubleshooting methods) makes it more 
difficult to effectively estimate a wide range of models 
researchers may want to fit on their data.

On the other hand, Bayesian approaches to EMA data 
analysis handle these practical challenges well. Because 
Bayesian models incorporate prior information, which 
guides the estimator toward plausible values (or at least 
restricts it to possible values), Bayesian models are much 
less likely to encounter convergence problems when 
fitting mixed-effects models (Aguilar & Bürkner, 2022; 
Barr et al., 2013), which may be especially helpful in the 
estimation of random-effects parameters (Bates, Kliegl, 
et al., 2015). Second, a Bayesian software package exists 
(the R package brms, which we use in this tutorial) that 
can accommodate a much wider range of models with-
out having to switch software or packages. Thus, using 
a Bayesian rather than frequentist approach gives 
researchers more flexibility and much higher confidence 
that the model they have in their mind will converge 
and be interpretable.

There are also conceptual differences between fre-
quentist and Bayesian approaches, although it is impor-
tant to highlight that nearly all of these differences can 
be addressed in some way in the frequentist framework. 
Thus, our argument is not that Bayesian analyses are 
conceptually superior to frequentist ones but, rather, that 
more emphasis has been placed on statistical reasoning 
and inferences in the Bayesian literature that we con-
sider to be informative in the context of EMA studies 
and mixed-effects models. A big difference is that a 
Bayesian analysis typically does not contain any p val-
ues. Computing p values (and by extension, frequentist 
confidence intervals) from mixed-effects models is  

not straightforward (Bates, 2006), and in many cases, 
obtaining “correct” p values and confidence intervals 
requires researchers to implement extra steps, such as 
using an additional overlay package (e.g., lmerTest) to 
obtain p values using approximations of the correct 
degrees of freedom, using Markov chain Monte Carlo 
(MCMC) sampling, or bootstrapping (Bates, Maechler, 
et al., 2015). In other words, obtaining accurate p values 
and confidence intervals in traditional frequentist analy-
ses is difficult and adds many extra steps that are chal-
lenging and may lead to invalid inferences.

Encouraging p values is especially problematic for 
EMA studies because collecting EMA data is expensive, 
time-intensive, and effortful, resulting in many EMA stud-
ies employing rather small sample sizes. For example, 
in an individual participant data meta-analysis of 69 EMA 
studies, 41% included fewer than 100 participants (Dora, 
Piccirillo, et al., 2023). Small samples tend to have low 
power to detect true effects and are at elevated risk of 
overfitting noise in the data. Consequently, statistically 
significant findings in low-powered studies tend to over-
estimate the population effect size and replicate poorly 
(Vasishth et al., 2018). Indeed, the prevalence of under-
powered studies has likely contributed to the “replica-
tion crisis”: the finding that many statistically significant 
findings do not replicate (Hagger et  al., 2016; Open 
Science Collaboration, 2015; Wagenmakers et al., 2016).

Conceptually, Bayesian models encourage users to 
focus on effect sizes and uncertainty. In a Bayesian anal-
ysis, results focus on the updating of one’s beliefs fol-
lowing the analysis of one’s data rather than statistical 
significance. Did the analysis reduce uncertainty regard-
ing the size of an effect? What is the probability that the 
effect one studied is zero or too small to care for? What 
is the probability that it is a medium or large effect? 
Answers to these questions can be derived from Bayes-
ian analyses and often are more informative than the 
difference between statistically significant and not sig-
nificant. Quantifying uncertainty about effect sizes 
allows researchers to determine whether their study 
provides sufficient evidence to assess their hypotheses. 
This information can be used to decide whether one 
needs to design another high-effort EMA study to test a 
research question or whether it is time to move on and 
allocate one’s resources elsewhere. Thinking about an 
entire literature of EMA research, we suggest that studies 
would not be summarized by counting significant and 
nonsignificant findings but to the extent that their esti-
mates of uncertainty converge (or not), thereby contrib-
uting to a more thorough evaluation of a research 
question. Moreover, these inferences are valid even if 
models are adjusted after seeing the data because Bayes-
ian analyses depend only on one’s prior and the data 
but not on the number of tests that one runs on the data 
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(although also when using Bayesian statistics, one needs 
to make sure not to cherry-pick results that fit a narra-
tive; Dienes, 2011). Proper use of prior distributions also 
helps researchers to deal with limitations of small sample 
size or highly parametrized models; such models incur 
a risk of overfitting (i.e., capturing idiosyncratic noise 
in the sample rather than generalizable effects), which 
results in increased Type I errors (i.e., an increased risk 
of obtaining a nonreplicable significant p value; Gelman 
et al., 2008). Overfitting can be curtailed by specifying 
priors that assign greater probability mass to values near 
zero, a process called “regularization.”

A Short Review of Bayesian Reasoning

The primary distinction between frequentist and Bayes-
ian statistics is a different definition of probability. In 
frequentist statistics, probability refers to the frequency 
of an event’s occurrence if the study was, hypothetically, 
to be repeated many times. This so-called long-run prob-
ability considers each possible outcome equally likely a 
priori, and thus the parameters are contingent only on 
the likelihood of the present sample. The Bayesian defi-
nition of probability, by contrast, reflects the degree of 
belief or confidence in a particular event. This probabil-
ity is contingent on both the likelihood of the present 
sample and the prior probability assigned to different 
parameter values. The two perspectives can be bridged 
by viewing frequentist statistics as a special case of the 
Bayesian approach in which one assumes a complete 
absence of prior knowledge. If one assumes that all 
parameter values are exactly equally likely before seeing 
the data, the results from the Bayesian approach will 
mirror those from the frequentist approach.

Under frequentist logic, researchers can learn about 
the probability of observing the collected data (or more 
extreme data) under the assumption that the null hypoth-
esis is true (i.e., p[data | hypothesis]). For example, let 
us say researchers are interested in learning whether 
people are more likely to report a hangover the more 
alcoholic drinks they consumed the night before. After 
conducting a study, they find that on average, people 
are 10% more likely to report a hangover with each 
additional alcoholic drink consumed the night before. 
They can then estimate how (im)probable that observed 
effect is when they assume that the true effect in the 
population is 0. To do this, they need to clearly define 
their sampling strategy and analysis plan ahead of time 
(i.e., make every data-analytic decision so that they have 
one path through the forking garden) because the risk 
of making a Type I error is inflated if they run their test 
more than once. In contrast, under Bayesian logic, 
researchers can learn about the probability of their 
hypothesis being true given the data they observed  
(i.e., p[hypothesis | data]). Thus, they can estimate how 

(im)probable it is that people are more likely to report 
a hangover when they had more to drink from the data 
they collected irrespective of their sampling and analysis 
plan. The Bayesian approach to data analysis allows for 
this inference by assigning prior probabilities to compet-
ing hypotheses. Thus, the interpretation of a Bayesian 
analysis depends only on these priors and the data at 
hand. Every Bayesian analysis is built on Bayes’s rule, 
which “updates” the prior belief with the data to arrive 
at a posterior belief and can be written as:

P(hypothesis|data)
P(data|hypothesis)P(hypothesis)

P(data)
.=

Consider the (made-up) example above: Say you want 
to know the probability that an individual reports a 
hangover after having six alcoholic drinks the night 
before. Based on your clinical experience, you believe 
that roughly one in four times people feel hungover after 
having six drinks (prior). You then conduct an EMA 
study and find that two out of three times when people 
report a hangover, they also had six drinks (likelihood) 
and that they had six drinks in one out of three drinking 
episodes. Using these numbers, you can then use Bayes’s 
rule to determine that the probability that a person 
reports a hangover after having six drinks is 51%:

P(hangover|6 drinks) =
×

=
0 67 0 25

0 33
0 51

. .

.
. .

All probabilities in this example are “point probabilities”: 
the probability of a specific event occurring or not. EMA 
models rarely deal with point probabilities, however; 
instead, researchers often work with probability distribu-
tions, which describe the probability of a range of pos-
sible parameter values. The mathematical underpinnings 
are the same, however. One can apply Bayes’s rule to 
compute a posterior probability distribution based on a 
prior probability distribution and the likelihood of the 
data. We elaborate on this below.

For Whom Is This Tutorial?

This tutorial is aimed at psychological researchers who 
use or are interested in using EMA study designs in their 
work. We use the brms package (Version 2.17.0; Bürkner, 
2017) in R (Version 4.2.0; R Core Team, 2021), which is 
built on the probabilistic programming language Stan 
(Stan Development Team, 2022b). This package gives 
researchers by far the most flexibility in their Bayesian 
EMA analyses while being reasonably accessible, espe-
cially for people familiar with R. For interested readers, 
we have put together a step-by-step tutorial for installing 
brms (https://osf.io/rh2sw/wiki/home/). The principles 
of Bayesian mixed-effects modeling we illustrate here 

https://osf.io/rh2sw/wiki/home/
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generalize to many other proprietary software packages 
as well. In general, working through this tutorial should 
enable readers to apply a Bayesian workflow to their 
EMA data analyses in their preferred software of choice.

This tutorial is organized as follows: First, we outline 
the key steps in a Bayesian analysis. Second, we go 
through three applied examples of analyzing EMA data 
with a Bayesian workflow. This tutorial is written as a 
practical first step into Bayesian data analysis for EMA 
researchers. We do not cover all aspects of Bayesian 
modeling in detail but provide a short list of resources 
for further reading in our concluding remarks.

Key Steps in a Bayesian Analysis

A Bayesian data analysis consists of the following steps:

1. Define your model.
2. Specify your priors.
3. Fit the model to your data.
4. Check your model for convergence.
5. Assess your model fit.
6. Draw your inferences.

Defining the model

There is nothing unique about this step in a Bayesian 
analysis. As explained before, EMA models typically con-
tain a mix of fixed and random effects. In the majority 
of EMA research, the fixed effects, which represent the 
estimated average intercepts and slopes across partici-
pants, are the parameters of theoretical interest that are 
evaluated to test the hypothesis or answer the research 
question. However, especially in a Bayesian framework, 
in which random effects (representing intercepts and 
slopes varying across participants) are estimated param-
eters, random effects can convey important information 
and should be paid attention to. For example, random 
effects allow one to make predictions for individual par-
ticipants and can be summarized to illustrate for how 
many participants in the sample a meaningful effect is 
estimated (see the applied examples below). Aside from 
specifying the fixed and random effects, we also specify 
a distribution for the unexplained variance in our out-
come. In traditional linear regression, this is typically a 
Gaussian (normal) distribution, but one can specify 
other distributions, such as the binomial or Poisson, 
depending on the type of data.

Defining priors

Next, the priors for all parameters in the model need to 
be explicitly defined. Defining priors is the biggest prac-
tical difference between a frequentist and a Bayesian 

analysis. The priors represent one’s expectations about 
the a priori plausibility of different values of one’s model 
parameters. In other words, the priors can be thought 
of as reflecting your knowledge (or lack thereof) regard-
ing the phenomenon that you study. For parameters that 
can take continuous values, priors come in the form of 
distributions (prior probability distribution). Let us con-
sider the simple example in which you want to estimate 
the difference in average alcoholic drinks consumed 
during a drinking episode between people who say they 
have and do not have a drinking problem.

In theory, you can use any distribution for your prior. 
Priors fall along a range from uninformative to strongly 
informative. For regression coefficients, a flat or uniform 
prior is the most uninformative distribution possible. It 
assigns equal prior probability to all possible outcomes. 
If all other priors are also uninformative, the posterior 
probability distribution will be entirely dependent on 
your data, just like in frequentist analysis. In our specific 
example, this would mean that you consider it just as 
likely that people who say they do not have a drinking 
problem on average consume three drinks more as that 
both groups will not differ in their alcohol consumption. 
The other extreme is an informative prior, which 
expresses a strong belief about what the effect should 
be by assigning a high probability density to a specific 
value. In our example, specifying a normally distributed 
prior with a mean of 2 and a standard deviation of 0.1 
would imply that you believe (before seeing any data) 
that on average, people who say they have a drinking 
problem will consume between 1.8 and 2.2 more drinks 
with 95% probability and that values below 1.5 and 
above 2.5 are virtually impossible. This strongly biases 
the results of your study toward your prior expectation. 
Although this kind of prior has a place in some psycho-
logical research (e.g., for cumulative knowledge acquisi-
tion in replication studies), it may be less relevant for 
most EMA studies.

In between uninformative and informative priors are 
so-called weakly informative or regularizing priors (Gel-
man et al., 2017), which assign lower prior probability 
to extreme parameter values. Such priors often make 
sense given that most effect sizes in psychology tend to 
be small (Richard et al., 2003; Schäfer & Schwarz, 2019). 
In that way, weakly informative priors have minimal 
influence on one’s inferences while simultaneously pro-
viding a conservative safeguard against improbably large 
effect sizes (especially when data are sparse) and help 
one’s models converge by providing a better starting 
point to locate parameter estimates (Bates, Maechler, 
et al., 2015; Eager & Roy, 2017; Gelman, 2009). In our 
example, a reasonable weakly informative prior might 
be a normally distributed prior with a mean of 0 and a 
standard deviation of 1.5, implying a 95% probability 
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that either group will consume up to three drinks more 
but that values closer to 0 are more likely. What consti-
tutes a reasonable prior is entirely dependent on the 
context and the scale of your variables. Priors should 
reflect researchers’ knowledge of the phenomena they 
study. Whenever researchers are not sure what outcome 
to expect from their study, weakly informative priors 
should perform well for the reasons outlined above. One 
important consideration is to avoid to formulate priors 
based on the collected data. This practice is termed 
“double-dipping” because researchers are using the data 
twice, once to formulate a prior belief and then to 
update this belief with the data. This will likely result in 
overconfident and biased estimates and credible inter-
vals (comparable with inflating the Type I error rate in 
frequentist statistics.

Fitting the model

There are a few differences in this step compared with 
when fitting a frequentist model. The reason is that 
unlike in our hangover example above, the posterior 
distribution (which was obtained by updating the prior 
distribution with the data) is rarely analytically defined 
for complex models, such as mixed-effects models. 
However, it can be approximated reasonably well by 
sampling from the posterior using Hamiltonian Monte 
Carlo simulation. To understand the concept behind 
this method, consider the following example: Imagine 
we want to estimate the joint posterior distribution for 
two parameters, b1 and b2. We can think of this pos-
terior as a three-dimensional landscape, with b1 on the 
x-axis and b2 on the y-axis. The elevation of the land-
scape, or z-axis, is the posterior probability of these 
two parameters. The most likely combination of param-
eter values is a deep valley in the landscape. Now think 
of Hamiltonian Monte Carlo as a game of marbles, 
where you drop marbles onto this landscape at random 
points and record where they stop rolling. Many mar-
bles will land in the deep valley of the most likely 
combination of parameter values, but other marbles 
may get stuck on a ledge or somewhere out on the 
sides of the landscape. After dropping many marbles, 
their final coordinates combined give a good approxi-
mation of the shape of the landscape. In technical 
terms, this process is called “sampling from the poste-
rior,” and every marble represents a single sample. We 
explain the process of approximating the posterior dis-
tribution in our running example below. What you 
should take away from this section is that for most EMA 
research, it is not feasible to exactly compute the pos-
terior distribution; instead, you try to approximate this 
distribution, and you need to make sure that you 
approximated it well (see below).

Checking model for convergence

Before we can interpret the results, we need to check 
whether our Bayesian model failed to converge. The most 
important thing we need to check is if we were able to 
approximate the posterior distribution well. Given the 
complexity of this problem, it happens reasonably often 
that our model initially does not explore the full distribu-
tion. Consider the marble analogy: We must ascertain 
that marbles rolled around the entire landscape. Bayesian 
statisticians have developed multiple approaches to 
check this and solutions should we have reason to believe 
that it failed (Carpenter et al., 2017), which we describe 
in detail in our running example below.

Assessing model fit

As a final step before we can interpret our model, we 
need to check whether our model adequately fits our 
data. To assess this, we can make use of posterior pre-
dictive checks. To perform a posterior predictive check, 
we simulate new values for our outcome from the joint 
posterior distribution and then compare these values 
with the observed data. If our model fits the data well, 
the distribution of simulated outcome values should 
closely resemble the distribution of observed outcomes 
in our data set. If this is not the case, we have strong 
reason not to trust the predictions of our model. This 
approach might sound familiar if you ever plotted pre-
dicted values against observed values for your regression 
models. However, a posterior predictive check is Bayes-
ian in the sense that the simulation comes from the 
posterior distribution and thus incorporates the uncer-
tainty around parameter estimates rather than relying on 
maximum likelihood. We give a concrete example of this 
below. Note that when we perform a posterior predictive 
check, we are also using our data twice, something we 
generally want to avoid, as explained above. The differ-
ence between using the data to specify priors and using 
it to assess model fit is that here we are using the pos-
terior predictive check solely as a tool to check for a 
severe problem of our model (that we cannot simulate 
data from it that mirror the observed data) and not as a 
tool to compare models or to draw inferences. As a 
consequence, it is important to use posterior predictive 
checks only as a diagnostic tool and not to make deci-
sions about which of several models to report or base 
conclusions on.

Drawing inferences

The Bayesian definition of probability allows research-
ers to perform inference directly on the posterior distri-
bution. This probability distribution represents the 
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probability assigned to specific population values for 
the parameter in question, conditional on the prior and 
the data. To interpret the posterior distribution, first, you 
can consider its shape, location, and scale. For example, 
a sharply peaked distribution centered around a particu-
lar location indicates a narrow range of plausible popu-
lation values (low uncertainty). A flatter distribution with 
lower probabilities for most values indicates a large 
amount of uncertainty about the population parameter. 
In general, the posterior distribution can be plotted and 
interpreted as the full range of possible values that may 
represent the true effect size that differ in plausibility 
(values closer to the peak are more likely; values closer 
to the tails are less likely but not impossible). The pos-
terior distribution can be paired with one of two Bayes-
ian probability intervals. In Bayesian analyses, intervals 
can be interpreted as a “window of uncertainty” within 
which the population value falls with 95% certainty, 
given the prior and data. Two commonly used intervals 
are the credibility interval, which simply consists of the 
2.5th and 97.5th quantiles of the posterior distribution, 
and the highest posterior density interval, which is the 
narrowest possible interval that contains 95% probability. 
Theoretically, we could use this interval to reject the null 
hypothesis if it were desired. Generally, we believe it is 
more informative to focus on effect sizes and use the 
posterior distribution and 95% credible interval as mea-
sures of uncertainty around the estimate. This encour-
ages readers to think more deeply about the field’s 
theories and models and in that way build a more robust 
body of empirical evidence (Halvorson et al., 2022; King 
& Dora, 2022; McCabe et al., 2022; Tackett et al., 2019).

Because of the different definition of probability, 
Bayesian analyses do not provide the “traditional” p 
value. However, probabilities about population param-
eters can be directly calculated from the posterior. For 
instance, it is possible to calculate the probability that 
the population effect is of opposite sign from the pos-
terior mode, which can be interpreted as the probability 
of incorrectly concluding that an effect is positive if the 
posterior mode is positive. It is also possible to calculate 
the probability contained between plus and minus some 
small value representing a minimum effect size of inter-
est (Anvari & Lakens, 2021); this can be interpreted as 
the probability that the effect is too small to be of practi-
cal relevance.

Bayesian analyses also allow quantifying evidence in 
favor over, versus against, an informative hypothesis 
(Van Lissa et al., 2021; Wagenmakers et al., 2012). This 
can be achieved by computing a Bayes’s factor, which 
is a ratio of evidence in favor of one hypothesis over 
the evidence in favor of another hypothesis. As such, a 
Bayes’s factor of 1 indicates that the data support both 
hypotheses equally well, whereas Bayes’s factors of 3, 

10, and 30, respectively, indicate that one hypothesis is 
3, 10, and 30 times more likely than the other given the 
data and the prior. Unlike a frequentist p value, a Bayes’s 
factor provides a continuous measure of evidence either 
for or against a hypothesis.

Note that all inferences in a Bayesian analysis, but 
especially Bayes’s factors, are contingent on the priors 
(Schad et al., 2022; Wagenmakers et al., 2010). With this 
in mind, it is best practice to conduct sensitivity analyses 
to demonstrate that inferences are robust to different 
choices of priors. If one wishes to entirely eliminate 
researcher degrees of freedom introduced by the choice 
of prior and evidence threshold, these quantities can be 
preregistered ahead of time to eliminate researcher 
degrees of freedom that are introduced by a free choice 
of priors (Munafo et  al., 2017; Nosek et  al., 2018). In 
fact, because Bayesian models can be run based on just 
the priors, it is possible to preregister an entire repro-
ducible analysis, along with placeholder results, before 
the collection or analysis of real data. For more on this 
approach, see the work on “Preregistrations-as-Code” 
(Peikert et al., 2021; Van Lissa et al., 2021).

Running Example

Now that we introduced the key steps in a Bayesian 
analysis, we use a running example based on real EMA 
data collected in regularly drinking college students 
(Smith et al., 2023; Witkiewitz et al., 2012) to illustrate 
these steps. A total of 213 undergraduate students ages 
18 to 27 (54.0% female) completed 9,366 momentary 
surveys and responded to at least one survey on 2,801 
days. We examine the association between perceived 
self-control demands and three alcohol-use outcomes. 
Two earlier studies suggest that an association between 
self-control demands and alcohol outcomes exists in 
EMA data (DeHart et  al., 2014; Muraven et  al., 2005), 
whereas a recent study failed to replicate such a within-
persons association (Walters et al., 2018). All data and 
R code are available at https://osf.io/rh2sw/. We suggest 
following along in R while reading the remainder of this 
article.

Measurements

Perceived self-control demands

At each EMA assessment, participants reported perceived 
self-control demands in the past 10 min via four items 
taken from a prior study (Muraven et al., 2005). They 
indicated to what extent they needed to (a) control or 
fix their mood, (b) control or fix their thoughts, and (c) 
deal with anything stressful and (d) how much they felt 
overwhelmed on a scale from 0 (not at all) to 100 (very 

https://osf.io/rh2sw/
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much). Scale scores were computed by taking the mean 
of these items, which showed high reliability across 
items and time (RkF = .98; Shrout & Lane, 2012).

Alcohol intoxication

At each morning EMA assessment, participants reported 
(if they drank alcohol the previous night) how drunk or 
intoxicated they got with a single item on a scale from 
0 (not at all) to 6 (very much).

Alcohol use

At each morning EMA assessment, participants reported 
how many alcoholic drinks they consumed the previous 
day on a slider from 0 to 30 or more.

Alcohol consequences

At each morning EMA assessment, participants reported 
(if they drank alcohol the previous night) whether they 
experienced any of the following four consequences of 
their drinking: having a hangover, failing to remember 
events within the drinking episode, experiencing nausea 
from drinking, and experiencing an intoxication-related 
injury.

Running Example 1: A Fully Bayesian 
Analysis

For our first example, we hypothesized that on drinking 
days, perceived self-control demands would predict 
increased subsequent alcohol intoxication. Before we 
can get started with our analysis, we need to process 
our data set. Although the necessary steps differ from 
data set to data set and analysis to analysis, we illustrate 
here one example of such processing. This is necessarily 
idiosyncratic, and you might have made different deci-
sions when faced with the same data and hypothesis. 
We start with our data in long format so that each row 
represents the momentary data from one participant 
(e.g., if a participant responded to 30 surveys across 8 
days, we have 30 rows of data for this individual). For 
this analysis, we remove data from days on which par-
ticipants reported no alcohol use. We then average self-
control demands before the onset of alcohol use (to get 
a daily estimate of self-control demands before the 
drinking episode), format our data so that each row of 
our data set reflects the daily data from one participant 
(e.g., a participant reported any amount of alcohol use 
on 4 days, so we now have four rows of data for this 
individual), and finally, standardize self-control demands 
within participants so that they have a mean of 0 and a 
standard deviation of 1 to help with the intuitive inter-
pretation of prior and posterior probabilities. For 

example, with the help of the dplyr package (Wickham 
et al., 2019), we could accomplish the data processing 
like this:

data.intox <- data %>%
filter(alc.drinks > 0) %>% # removing  
 days on which no alcohol was consumed
mutate(control.fixmood = ifelse(hour  
 >= alc.onset, NA, control.fixmood),
  control.fixthought = ifelse(hour  
   >= alc.onset, NA, control. 
   fixmood),
  dealt.stress = ifelse(hour >= alc. 
   onset, NA, control.fixmood),
  felt.overwhelm = ifelse(hour >=  
   alc.onset, NA, control.fixmood),
  # previous 4 lines remove demands  
   reports that occurred after  
   drinking onset
  demands = rowMeans(across(all_ 
   of(demands.items)), na.rm=T))  
   %>% # mean EMA signal
group_by(PID, study.day) %>%
mutate(demands = mean(demands,  
 na.rm=T)) %>% # daily mean
slice(1) %>% # retain 1 row per  
 participant and day
ungroup() %>%
group_by(PID) %>%
mutate(demands = scale(demands,  
 center = T, scale = T)) %>% #  
 standardize on pid-level
ungroup()

Defining the model

We will want to fit a model predicting alcohol intoxica-
tion of participant i on day t from self-control demands 
of participant i on day t (before the onset of drinking). 
Because each participant contributes observations on 
multiple days, we want to fit both fixed and random 
intercepts and slopes to account for variation between 
participants in alcohol intoxication and the effect of 
self-control demands on alcohol intoxication. Both fixed 
and random effects are assumed to be normally distrib-
uted. For educational purposes, we are first going to fit 
a linear model to these data, as is common in psychol-
ogy, although we do not expect this model to fit the data 
well; we will fit a more appropriate model afterward.

Defining priors

We can use the brms command get_prior() to figure out 
which priors can be specified for our model. In most 
models, we want to consider separate priors for our  
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(a) fixed intercept, (b) fixed slope(s), (c) all standard 
deviations for all random effects, (d) the standard devia-
tion of the residual error term, and (e) the correlation 
between random effects. For our example, let us define 
the following priors:

priors.intox = c(set_prior('normal 
 (3, 1)', class = 'Intercept'), #  
 prior on fixed intercept
   set_prior('normal(0, 1)', class =  

 'b', coef = 'demands'), # prior  
 on fixed slope

   set_prior('normal(0, 0.5)',  
 class = 'sd'), # prior on sds  
 and sigma

   set_prior('lkj(2)', class =  
 'cor')) # prior on random  
 correlations

First, we specify that our prior for the fixed intercept 
is normally distributed with a mean of 3 and a standard 
deviation of 1. Alternatively, we could use another sym-
metrical distribution such as the Cauchy or Student’s t’s 
distribution, which might make sense if we have reason 
to believe that our data exhibit kurtosis or we are work-
ing with a small sample size. This implies that we believe 
that the intercept, which represents the average level of 
alcohol intoxication at average levels of self-control 
demands across all participants and drinking episodes, 
will lie between 1 and 5 (remember alcohol intoxication 
is answered on a scale from 0 to 6) with 95% probability, 
with more probability mass assigned to values that are 
closer to 3. Whether this is reasonable depends on the 
context of the research; for example, if we had collected 
a sample of people who say they never have more than 
one alcoholic drink, we would have distributed more 
prior probability mass toward the lower end of the scale. 
If we had sampled from the same population previously, 
we would have chosen a more informative prior with a 
smaller standard deviation.

Next, we specified a normally distributed prior for the 
fixed effect of self-control demands on alcohol intoxica-
tion with a mean of 0 and a standard deviation of 1, 
which implies that we assign 95% of the prior probability 
mass to effect sizes between an increase or decrease of 
2 points as demands increase by 1 SD. In the majority 
of projects, we want to center our prior for our param-
eters of theoretical interest on 0 because this does not 
introduce bias in favor of our hypothesis (Gelman, 2009). 
In other words, by centering the prior on 0, we retain 
the advantages of prespecifying that large values are 
unlikely, but we do not bias the model toward negative 
or positive parameter values. This is advantageous when 
estimating a parameter for the first time. On the other 
hand, if we attempt to replicate an earlier finding, it 

might be advantageous to use the results from that ear-
lier study as priors in our new study to observe how 
much the probability distribution shifts with novel data.

For the standard deviations and the sigma parameter, 
we specify the prior Normal+(0, 0.5). Because standard 
deviations cannot take on negative values, brms auto-
matically truncates these priors at 0 if one specifies them 
to be normal. Without any additional information, in our 
experience, it works reasonably well to take the prior 
on the fixed slope and cut the standard deviation in half 
for the standard deviation and sigma prior. Finally, it is 
recommended to specify the LKJ(2) prior for the correla-
tion parameter3 because this prior seems to be weakly 
informative across many different random correlation 
matrices (Lewandowski et  al., 2009; McElreath, 2020). 
We visualized our four prior probability distributions in 
Figure 2.

Fitting the model in brms

In estimating our Bayesian model, we will regress alco-
hol intoxication on self-control demands (reported 
before onset of alcohol use) and will include both a 
random intercept and a random slope for demands to 
allow intercepts and slopes to vary across individuals in 
the sample. We can specify the model formula with the 
brm command:

model.intox <- brm(formula = alc. 
 intox ~ 1 + demands + (1 + demands  
 | PID), # model formula
   data = data.intox, family =  

 gaussian(), prior = priors.intox,
  chains = 4, iter = 2000, sample_ 
   prior = TRUE)

The brm command can be used for models with a 
variety of outcome distributions, which we specify with 
the family term. In this case, as we foreshadowed, we 
use a Gaussian distribution. If we do not specify our 
priors with the prior term, default priors will be used. 
These were strategically chosen by the developers to be 
appropriate in as many scenarios as possible. However, 
whether these defaults are in fact appropriate depends 
on the data and research question at hand. We recom-
mend to always specify at least the most relevant priors, 
as outlined above. As explained before via the marbles 
analogy, the model is estimated using Hamiltonian 
MCMC sampling. The chains argument specifies how 
many independent iterations of the MCMC sampler to 
run; typically, this should not be higher than the number 
of processor cores so that calculations can be parallel-
ized. By default, brms uses four independent chains, 
which often is sufficient to approximate the posterior 
distribution well (Bürkner, 2017). In the marbles analogy, 



10 Dora et al.

each chain is a separate game of marbles in the same 
landscape. The iter argument specifies how many sam-
ples from the posterior distribution should be drawn; in 
the marbles analogy, each sample is a marble. In each 
iteration, the chain “shoots” a marble from one point in 
the distribution to another, accepting or rejecting the 
point where the marble settles down based on a proba-
bilistic acceptance criterion. By default, brms uses 2,000 
iterations per chain and runs diagnostics to determine 
whether the samples adequately represent the posterior 
distribution. If there are any indications that this is not 
the case, brms models will produce warnings that the 
posterior distribution might not have been properly 

explored, in which case, the recommendation often is 
to increase the number of iterations.

Assessing model convergence

We need to ensure that our Bayesian model converged 
and fits the data well before we can interpret the results. 
The brms package gives us several ways to check this. 
First, we can visually inspect whether the four chains 
mixed. The plot() function produces a trace plot (see 
Fig. 3 for two trace plots, one indicating that the chains 
mixed well and one indicating that the chains did not 
mix because you can observe the traces for the four 
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Fig. 2. Prior probability distributions for the parameters in our model.
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individual chains). If the chains mix well, this suggests 
that multiple chains arrived at similar values for the 
posterior distributions, which indicates that the posterior 
distribution has been explored well. By contrast, if the 
chains do not mix, this suggests a problem with the 
model—perhaps it has not converged yet, or the model 
may be mis-specified. A second indication that the 
chains are mixing well is that the variability within each 
of the four chains is approximately the same as the vari-
ability between the four chains. This ratio is represented 
by the Rhat statistic, which should be close to 1.00 for 
all parameters in the model. Third, for each parameter, 
there should be sufficient independent samples to get a 
good representation of the posterior. Although we asked 
for 2,000 samples from four chains, sometimes the algo-
rithm “gets stuck” in the same region of the posterior 
and samples there repeatedly. We can say that these 
samples are not independent because they do not pro-
vide unique information about different regions of the 
posterior. The effective sample size is an estimate of the 
number of our independent samples. This number 
should be sufficiently high; one could set an absolute 
threshold, such as 1,000, or use the rule of thumb that 
the effective sample size should be larger than 10% of the 
number of samples across the four chains (McElreath, 
2020). In our example, we have 4,000 samples (4 × 1,000 
because half of the samples are discarded as warmup/
burn-in), and thus effective sample size should be larger 
than 400 for each parameter. Both Rhat and effective 
sample size can be retrieved from the model output. 

Again, if any of these metrics suggest convergence prob-
lems, brms will print a warning paired with a helpful 
suggestion, such as increasing iterations, adding a con-
trol term to the command (e.g., increasing adapt_delta 
or max_treedepth), or considering a different prior. For 
a more detailed discussion of convergence issues, warn-
ings, and potential fixes, see Stan Development Team 
(2022a).

Assessing model fit

To assess whether our model fits the data well, we per-
form a posterior predictive check by simulating new 
values from the joint posterior distribution for our out-
come and then compare these with the observed data. 
If our model fits the data well, the distribution of simu-
lated outcome values should closely resemble the dis-
tribution of observed outcomes in our data set. Such a 
simulation can be easily carried out and plotted via the 
pp_check() command, which in our case, produces the 
plot in Figure 4.

We can see that our model does not fit the data at all 
because the model-predicted data all follow a normal 
distribution, whereas the observed data follow a right-
skewed distribution, and the central tendency of both 
distributions differs. This should be hardly surprising to 
us. First, statisticians have warned against the use of 
analyzing Likert-scale items with linear regression for 
decades and have recommended to use ordinal models 
instead (Coombs, 1960). Second, we need to consider 
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the data-generating process of alcohol-intoxication 
reports. It is reasonable to assume that by and large, 
subjective alcohol intoxication increases as people 

consume additional alcoholic drinks. This suggests a 
sequential process wherein higher levels of alcohol 
intoxication are reached only after lower levels were 
reached earlier in the drinking episode. In responding 
to the ordinal alcohol-intoxication item, participants are 
attempting to quantify their level of alcohol intoxication 
(which may well be linear) by choosing among rank-
ordered categories. Choosing between, for example, 
“very” and “very much” reflects a nonlinear threshold in 
which the probability of choosing the greater option 
increases slowly at first, then very quickly after some 
threshold, and then declines as the probability of choos-
ing the next response option increases. Luckily, such a 
sequential ordinal model (Tutz, 1991) can be easily 
implemented in brms (Bürkner & Vuorre, 2019) by speci-
fying family = sratio. Let us fit our updated model with 
a sequential ordinal outcome distribution and perform 
another posterior predictive check (Fig. 5):

model.intox.seq <- brm(formula =  
 alc.intox.ordinal ~ 1 + demands +  
 (1 + demands | PID),
  data = data.intox, family =  
   sratio(), prior = priors. 
   intox, # updated family
  iter = 10000, warmup = 2000,  
   chains = 4, sample_prior =  
   TRUE, # increased iter
  save_pars = save_pars(all =  
   TRUE), control = list(adapt_ 
   delta = .95))

We can see that this model fits our data much better, 
which is unsurprising given that it more accurately rep-
resents a plausible data-generating process. Because the 
Rhat values and effective sample sizes look good too, 
we proceed with interpreting the results of our model.

Bayesian inference

Remember that the posterior distribution is the product 
of our prespecified prior distribution and the likelihood 
(i.e., data). We can plot the posterior distribution with 
the mcmc_plot() command (Fig. 6).

Here, we learn that self-control demands on drinking 
days do not appear to be associated with alcohol intoxi-
cation (b = 0.05, 95% credible interval [CI] = [–0.11, 
0.21]). Because this is an ordinal model, we need to 
exponentiate these values to learn by how many points 
alcohol intoxication increases as demands increase by 
1 SD (OR = 1.05, 95% CI = [0.90, 1.23]). Whereas this 
would be the end of many frequentist analyses (“not 
significant”), the posterior distribution reveals more than 
might be immediately obvious. Recall that we specified 
a priori that we believe with 95% certainty that the effect 

−3 0 3 6

y
yrep

Fig. 4. Posterior predictive check of the model predicting alcohol 
intoxication with a Gaussian distribution. The line corresponding to 
y represents the observed data, and the lines corresponding to yrep 
represent the distributions generated by simulating from the model.
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Fig. 5. Posterior predictive check of the model predicting alcohol 
intoxication with a sequential ordinal distribution. The line corre-
sponding to y represents the observed data, and the lines correspond-
ing to yrep represent the distributions generated by simulating from 
the model.
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size lies somewhere between an increase or decrease of 
2 points. You can see that once we updated our beliefs 
by adding the data to the model, this uncertainty has 
decreased considerably, and we can now be 95% certain 
that the effect lies somewhere between a decrease of 
≈0.1 points and an increase of ≈0.2 points. Thus, we can 
conclude that most likely, the effect is trivially small, but 
a miniscule plausibility of a small-but-meaningful effect 
in the expected direction remains.

If we wanted to calculate a Bayes’s factor for the 
hypothesis that the effect of self-control demands on 
alcohol intoxication is unequal to 0, we would compare 
a model including demands as a fixed effect (alc.intox 
≈ 1 + demands + (1 + demands | PID)) with a null model 
without it (alc.intox ≈ 1 + (1 + demands | PID)). We can 
then feed both models into the bayes_factor() command 
to quantify the evidence for our hypothesis (Schad et al., 
2022). We learn that the Bayes’s factor in favor of our 
hypothesis (BF10) is 0.10, or 1 in 10, which means that 
the data provide 10 times more support for the null 
hypothesis than for our informative hypothesis. How-
ever, when using default brms priors, the Bayes’s factor 
in favor of H0 is only 4.12, illustrating the importance of 
preregistering one’s priors.

Running Example 2: Fitting Models 
With Complex Outcome Distributions

For our second example, we explore whether people 
are more likely to drink and consume more drinks on 

days they reported higher self-control demands. Num-
ber of alcoholic drinks consumed is a count variable 
because it can take on only nonnegative integer values. 
Count variables are often modeled using the Poisson or 
negative binomial distribution. However, number of 
drinks consumed in EMA data tends to be zero-inflated 
because even regular drinkers tend to abstain on 50% 
to 80% of days (Dora et  al., 2022), which implies a 
higher number of zeroes than expected by the Poisson 
or negative binomial distribution. Such data can be 
accounted for by using mixture models. For example, 
a zero-inflated model represents the outcome as a count 
distribution but with additional expected zeroes. A hur-
dle model first predicts the probability of not drinking 
and then separately predicts the number of drinks con-
sumed on drinking days. Based on our experience pre-
dicting alcohol use in EMA data, a hurdle model with 
a negative binomial distribution for the nonzero values 
is often best matched with the data-generating process 
for daily alcohol use.4 However, an important first step 
in analysis is to choose and compare various outcome 
distributions. In our own work predicting the number 
of drinks in EMA data, we often sequentially compare 
zero-inflated and hurdle Poisson or negative binomial 
models, choosing the simplest distribution that best fits 
the data. We first specify some weakly informative pri-
ors, which are based on earlier preregistered analyses 
of alcohol use predicted by affect (Dora et al., 2022). 
Because this model uses a logit link, we need to specify 
the log of our priors. For example, if we believe that 
participants on average consume ≈4.5 drinks ± 2.7 
drinks per drinking episode with 95% probability (fixed 
intercept), we need to specify a normal(1.5, 0.3) prior. 
If we believe that the effect of demands on the number 
of drinks per drinking episode (fixed slope) should be 
somewhere between ±3 drinks, we need to specify a 
normal(0, 0.5) prior:

priors.drinks = c(set_prior 
 ('normal(1.5, 0.3)', class = 'b',  
 coef = 'Intercept'),
  set_prior('normal(0.75, 0.75',  
   class = 'b', coef = 'Intercept',  
   dpar = 'hu'),
  set_prior('normal(0, 0.5)',  
   class = 'b', coef = 'demands'),
  set_prior('normal(0, 0.5)',  
   class = 'b', coef = 'demands',  
   dpar = 'hu'),
  set_prior('normal(0, 0.25)',  
   class = 'sd'), set_prior 
   ('lkj(2)', class = 'cor'))

Next, we fit our brms model. We use the bf() com-
mand to easily specify two separate parts of our model, 
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one predicting the zero values (i.e., whether or not 
drinking occurs; “hu”) and one predicting the nonzero 
values (i.e., how many drinks are consumed on drinking 
days; “alc.drinks”):

model.drinks <- brm(bf(alc.drinks ~  
 0 + Intercept + demands + (0 +  
 Intercept + demands | PID),
  hu ~ 0 + Intercept + demands +  
   (0 + Intercept + demands |  
   PID)),
  data = data.drinks, family =  
   hurdle_negbinomial(), prior =  
   priors.drinks,
  iter = 10000, warmup = 2000,  
   chains = 4, sample_prior = TRUE,  
   init = 0,
  save_pars = save_pars(all = TRUE),  
   control = list(adapt_delta =  
   .95))

We check the trace plots to make sure that the chains 
mixed, ensure that Rhat values are close to 1 and effec-
tive sample sizes are adequate, and perform a visual 
posterior predictive check (Fig. 7), which shows that the 
model fits the data well.

We learn that demands are not associated with the 
odds of drinking on any given day (OR = 0.85, 95% CI = 
[0.47, 1.48]), nor are they associated with the number of 

drinks on drinking days (rate ratio [RR] = 0.99, 95%  
CI = [0.91, 1.07]). Nonetheless, we can see that the uncer-
tainty around the effect on the count (i.e., nonzero) 
portion of the model is much smaller than the effect on 
the logit (i.e., zero) portion. Thus, we learn that we can 
be much more confident that higher self-control demands 
are not associated with drinking quantity (conclusive) 
than that they are not associated with the likelihood to 
drink (inconclusive) because meaningful effect sizes in 
both directions retain posterior probability. We can visu-
alize this conclusion by plotting prior and posterior dis-
tributions on top of one another (Fig. 8), which shows 
the improvement in posterior precision of the count 
portion of the model, relative to the very minor improve-
ment in the hurdle portion.

One question you might ask yourself at this point is 
to what extent the priors we chose influence the results. 
This always depends on the chosen priors and the 
amount of data you have available. As a rule of thumb, 
less informative priors will influence the results less, and 
all priors will influence the results less when more data 
are available. For example, in the hurdle model we fitted 
above, let us replace our weakly informative priors on 
the fixed effects with uninformative flat priors that dis-
tribute equal prior probability to effects ±3. This hardly 
affected the result for drinking quantity (RR = 0.99, 95% 
CI = [0.91, 1.07]), but the results for the likelihood to 
drink shifted somewhat (OR = 0.76, 95% CI = [0.36, 1.54]). 
Thus, in this example, the prior did not matter much for 
the substantive interpretation of the results, but you can 
imagine how this might change the conclusion in other 
applied settings. Here, the null result for drinking likeli-
hood is still conclusive, and the uncertainty around the 
inconclusive result for drinking quantity is slightly bigger, 
meaning meaningful effect sizes larger and smaller than 
zero retain posterior probability.

As we argued above, we recommend using weakly 
informative priors and hence trust the results of that 
analysis more.

Although we are mostly interested in the fixed effects 
of our mixed-effects models, to better understand the 
results of our models, it is often useful to explore the 
random per-participant effects in our EMA data. For 
example, in case of null results, this helps us to under-
stand whether there is potentially a subsample of par-
ticipants who display the hypothesized effect. This could 
imply that an important between-persons moderator was 
missed that could explain for whom we should and 
should not expect the theoretical prediction to hold true. 
One way to do this is with the help of the tidybayes 
package (Kay, 2022). In this case, we have plotted the 
random per-participant effects of demands on the num-
ber of drinks consumed during drinking episodes for 10 
of our participants (it is hard to plot slopes for hundreds 
of participants in a visually clear way; Fig. 9). We can 
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Fig. 7. Posterior predictive check of the hurdle model predicting num-
ber of alcoholic drinks with a negative binomial distribution for the 
nonzero counts. The line corresponding to y represents the observed 
data, and the lines corresponding to yrep represent the distributions 
generated by simulating from the model.
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see that the slopes differ somewhat, and especially, the 
intercepts differ substantially between participants. This 
type of plot can help us learn to understand what is 
going on in our data.

Running Example 3: Accounting for 
Missing Data in Our Bayesian Models

For our third example, we demonstrate how to account 
for missing data in Bayesian models using multiple 
imputation (MI). We would like to predict whether peo-
ple are more likely to experience negative alcohol-
related consequences following drinking on drinking 

days they reported higher self-control demands. Com-
monly, EMA researchers assess multiple alcohol conse-
quences and then sum them for each drinking episode 
so that a higher score reflects more reported conse-
quences (Wray et  al., 2014). Because these “variety 
scores” ignore the uniqueness of each consequence 
(e.g., experiencing a hangover vs. injury) and reflect an 
assumption that all consequences are interchangeable 
in severity (because each experience equally increases 
the sum score by 1), we prefer to predict each conse-
quence by itself. Here, we show the analysis predicting 
the likelihood of experiencing a hangover. Because we 
expect the likelihood of experiencing a hangover to be 

Effect of Self-Control Demands on Number of Drinks

Effect of Self-Control Demands on Likelihood to Drink
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Fig. 8. Prior and posterior distributions for the effect of demands on the daily likelihood 
to drink (left) and the number of drinks consumed on drinking days (right).
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higher after more intense drinking, we will additionally 
predict consequences from the number of drinks 
consumed.

Accounting for missing data

One common struggle for EMA researchers we have not 
yet addressed is missing data. EMA studies almost always 
contain some amount of missing data, either by design 
or to minimize participant burden (Rhemtulla & Little, 
2012) or because of participant nonresponse (a meta-
analysis found an average response rate of 72% to 77% 
across 126 EMA studies; Jones et al., 2019). MI, which 
describes the general approach to create multiple data 
sets in which we replace missing values with plausible 
values randomly drawn from distributions and then pool 
the results across these multiple data sets, is widely 
regarded as a state-of-the-art solution to address missing 
data (van Buuren & Groothuis-Oudshoorn, 2011). 
Although alternatives are available (e.g., full information 
maximum likelihood (FIML), in which we do not impute 
missing values but estimate the single most plausible 
value based on the observed data), MI has several advan-
tages pertinent to the study of EMA data. First, MI has 
demonstrated greater efficiency in parameter estimation 
compared with maximum-likelihood-based approaches 
(Enders, 2017). Second, modern MI methods have been 
designed to accommodate complex multilevel and non-
linear design (i.e., interactions and polynomial effects; 
Enders et  al., 2020), both of which are central to the 
structure of EMA data and hypotheses of EMA design. 
Third, FIML accounts for data missing only on Y but not 

X at the lowest level of clustering, meaning it uses list-
wise deletion for any observation that is missing a value 
on a predictor.

Although a full review of imputing missing data that 
is nested in clusters (e.g., nested in participants in the 
case of EMA) is beyond the scope of this tutorial, here 
we show how we can easily fit a model on multiple 
imputed data sets with brms and how pooling infer-
ences across these submodels is straightforward in  
the Bayesian framework. For example, here we could 
perform a quick-and-dirty5 MI with the mice package 
(van Buuren & Groothuis-Oudshoorn, 2011) using the 
following code:

ini <- mice(data.conseq, maxit = 0)
meth <- ini$meth
meth[c(8:11)] <- "pmm"
meth[c(13)] <- "2l.binary"
pred <- ini$pred
pred["control.fixmood",] <- c(-2, 1,  
 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1)
pred["control.fixthought",] <- c(-2,  
 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1)
pred["dealt.stress",] <- c(-2, 1, 1,  
 1, 1, 1, 1, 1, 1, 0, 1, 1, 1)
pred["felt.overwhelm",] <- c(-2, 1,  
 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1)
pred["alc.hangover",] <- c(-2, 1, 1,  
 1, 1, 1, 1, 1, 1, 1, 1, 1, 0)
data.conseq.imp <- mice(data.conseq,  
 pred = pred, meth = meth, m = 10,  
 maxit = 20)
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Fig. 9. Per-participant random slopes (in black) surrounding the fixed effect (in gray) for the 
effect of perceived self-control demands on the number of drinks consumed during drinking 
episodes.
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We use the data.conseq.imp object, which contains 
the 10 imputed data sets, in our model fitting below. 
Consequences were either endorsed or not endorsed for 
each drinking episode, meaning they are a binary out-
come that we model with the bernoulli() family. Once 
more, we need to remember that our priors are on the 
log scale. Our priors specify that we believe that a hang-
over is experienced roughly every five drinking episodes 
at average levels of demands and drinks and that expe-
riencing a hangover would be no more or less likely 
than 3 times for any increase in 1 SD in demands or one 
alcoholic drink:

priors.hangover = c(set_prior 
 ('normal(-1.5, 0.5)', class =  
 'Intercept'),
  set_prior('normal(0, 0.5)',  
   class = 'b'),
  set_prior('normal(0, 0.25',  
   class = 'sd'),
  set_prior('lkj(2)', class =  
   'cor'))

We can use the brm_multiple() command to simply 
fit our model on multiple data sets:

model.hangover.imp <- brm_multiple 
(alc.hangover ~ 1 + demands + alc. 
drinks + (1 + demands + alc. 

drinks | PID), data = data.conseq.
imp, prior = priors.hangover, 
family = bernoulli(), iter = 4000, 
chains = 4, sample_prior = TRUE, 
save_pars = save_pars(all =  
TRUE), control = list(adapt_ 
delta = .95))

After fitting this model, brms warns us that parts of 
the model may not have converged as indicated by Rhat 
values larger than 1.05. Fitting a model on multiple data 
sets often results in false-positive convergence warnings 
because the chains for each data set may not overlap 
even when the model converged in each individual data 
set. We can confirm that the model converged by inspect-
ing the individual Rhat values via model.hangover.
imp$rhats, which clarifies that the Rhat values in each 
of the data sets are exactly 1. We can also perform a 
posterior predictive check on our brm_multiple() object; 
however, this will perform the check in only one of the 
imputed data sets (Fig. 10). Whereas pooling results 
across multiple frequentist models is not straightforward 
and can lead to biased inferences (Zhou & Reiter, 2010), 
in a Bayesian analysis, we can achieve a pooled infer-
ence by simply combining the posterior draws of the 
submodels. Once again, this results in a single posterior 
distribution (Fig. 11).

We can see that according to a frequentist interpreta-
tion of the results, demands are not significantly associ-
ated with the likelihood of experiencing a hangover (OR = 
0.79, 95% CI = [0.59, 1.07]). However, note that the CI is 
very wide here, indicating high uncertainty regarding 
the population-level effect size. In a Bayesian analysis, 
there is nothing magical about the value of 0 (or 1 in 
the case of OR). Whether this result provides evidence 
in favor of or against demands being associated with a 
reduced likelihood to experience a hangover the same 
day depends on what effect sizes we consider meaning-
ful. For example, with the following code, we can realize 
that the posterior probability that a 1 SD increase in 
demands is associated with at least a 10% lowered likeli-
hood to experience a hangover (assuming this is the 
smallest effect size we care about) is 80%:

model.hangover.imp %>%
 gather_draws(b_demands) %>%
 filter(.value <= -0.1) %>%
 nrow() /40000 * 100

The posterior probability that it is associated with at 
least a 20% lowered likelihood is only 56%. On the other 
hand, the posterior probability that the effect is positive 
is only 7%. Thus, controlling for the number of drinks 
participants consumed, the data overall provide some 
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Fig. 10. Posterior predictive check of the model predicting the likeli-
hood of reporting a hangover. The line corresponding to y represents 
the observed data, and the line corresponding to yrep represents the 
distribution generated by simulating from the model.
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evidence that participants are slightly less likely to report 
a hangover on days they report higher self-control 
demands. The uncertainty in this conclusion is large, 
and thus, more data are required in the future to improve 
our confidence in this conclusion.

Unsurprisingly, number of drinks consumed was a 
consistent predictor of consequences. For example, our 

model estimates that with every additional drink, the 
likelihood of reporting a hangover increased by 21% 
(95% CI = [11%, 32%]. Because this may be hard to inter-
pret, we like to plot this effect with the conditional_
effects() command (Fig. 12). The plot shows that our 
model estimates that hangovers are rare even after five 
drinks and that it takes roughly 15 drinks to reach 50% 
probability. But we can also see that the uncertainty 
interval widens with increasing numbers of drinks 
because those are less often reported. Thus, our main 
conclusion from this result is that contrary to previous 
findings indicating that hangover severity declines with 
age (Tolstrup et al., 2014; Verster et al., 2021), college 
students in our data sets seem to be much more immune 
to hangovers than the authors of this article.

In summary, the results of our Bayesian analysis are 
more consistent with a recent EMA study (Walters et al., 
2018) and do not corroborate two earlier studies that 
reported such associations (DeHart et al., 2014; Muraven 
et al., 2005). The current study does not provide support 
for an association between perceived self-control 
demands and alcohol use among college students. In 
the case of subjective alcohol intoxication, a Bayes’s 
factor provided 10-fold evidence against such a 
prediction.

Discussion

In the present tutorial, we aimed to provide a gentle 
introduction to how EMA data can be analyzed using 
Bayesian (generalized) mixed-effects models. We pre-
sented several strengths of the Bayesian approach for 
EMA data analysis. These are (a) how weakly informative 
priors aid convergence for models with random effects, 
(b) how weakly informative priors reduce the risk of 
overestimating the true effect size, and (c) how imputa-
tion of missing data can be implemented in a Bayesian 
framework. However, we argue that the Bayesian 
approach has additional advantages that are especially 
suitable and important when analyzing EMA data, which 
are expensive and time-consuming to collect. Specifi-
cally, Bayesian models de-emphasize mindless conclu-
sions based on defaults and instead emphasize 
prespecifying a prior belief for each model parameter 
and deciding which effect sizes researchers deem plau-
sible and meaningful before conducting their analysis. 
This is especially compatible with an Open Science per-
spective (Munafo et al., 2017), in which it is important 
to be transparent about what one expected from one’s 
data analysis before conducting a study. Moreover, by 
quantifying and presenting the uncertainty of models 
after analysis, the Bayesian perspective encourages 
researchers to provide interpretations of their models 
that are more closely grounded in their data rather than 
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Fig. 11. Posterior distributions of the fixed main effect of self-control 
demands on the likelihood to report a hangover. Plotted on top of the 
distribution is the 95% Bayesian credible interval.
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treating significance as a license to interpret their effects 
however they wish (Cohen, 1994; Cortina & Landis, 
2011). This also provides a better understanding of when 
results provide strong evidence in favor of the presence 
or absence of an effect and as when results turn out to 
be inconclusive.

There are many theoretical and methodological issues 
in EMA research that we have not addressed. First, it is 
critical to harmonize one’s statistical test with one’s theo-
retical prediction (Kaurin et al., 2023), especially when 
it comes to the timescale at which hypothesized associa-
tions play out. Bayesian EMA models allow tremendous 
flexibility in modeling multiple timescales from contem-
porary or lagged associations at multiple lags to model-
ing trajectories within and across days. Alternatively, one 
may want to estimate an autoregressive correlation or 
an autoregressive moving average (Hamaker & Dolan, 
2009) to model temporal dynamics in a variable. Location-
scale models allow prediction of not only levels but also 
variation (Williams et al., 2019). You might want to apply 
growth-curve modeling (Armey et al., 2011) or survival 
analysis (ten Broeke et al., 2020) to your EMA data. All 
of these modeling procedures and more are imple-
mented in brms along the vast array of outcome distribu-
tions, enabling you to perform all possible EMA analyses 
in the context of one software package, which makes 
learning brms an extremely efficient and rewarding 
endeavor. An advantage of fitting such complex models 
in a Bayesian framework is once more that priors help 
with parameter estimation and model convergence. One 
potential limitation of (generalized) linear mixed-effects 
models worth highlighting is that when studying lagged 
associations, these models do not account for the 
unequal time that passed between two consecutive EMA 
surveys. Recently, some work has been done to develop 
continuous-time models in which the lagged association 
decays over time (because it is reasonable to assume 
that any association that exists should get weaker as 
more time passes between two surveys). As of the time 
of writing this tutorial, it is hard to guess to what extent 
the discrete-time assumption biases inferences because 
simulation studies have come to different conclusions 
(De Haan-Rietdijk et  al., 2017; Loossens et  al., 2021). 
Continuous-time models such as the Ornstein-Uhlenbeck 
model, which has been used to analyze EMA data 
(Nowak et al., 2023), are currently not implemented in 
brms but can be specified in Stan, the infrastructure on 
which the package was built.

This tutorial provided a hands-on guide to Bayesian 
mixed-effects modeling of EMA data to EMA researchers 
new to Bayesian data analysis and highlights the 
immense flexibility the brms package gives researchers 
when analyzing a variety of outcomes. In reiteration, the 
steps we discussed are (a) defining our model; (b) defin-
ing outcome distributions and prior probability 

distributions for the parameters of interest, which 
involves consideration of the data-generating process 
and the expression of beliefs of the plausibility and 
meaningfulness of effect sizes; (c) fitting the model in 
brms; (d) assessing model convergence and model fit; 
and (e) drawing inferences via posterior distributions 
and Bayes’s factors. In this tutorial, we have not covered 
every aspect of Bayesian data analysis or the analysis of 
EMA data. To those readers who would like to dive 
deeper into Bayesian data analysis, we recommend to 
start with the textbook by McElreath (2020) and an anno-
tated reading list by Etz and colleagues (2018).
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4. However, the distinction between the two is often theoretical 
because the hurdle model assumes one distinct process produc-
ing zeros and nonzero values, whereas the zero-inflated model 
assumes two processes producing zeros.
5. It really is quick and dirty; we would not be satisfied with 
this imputation model in our substantive research, but it works 
here because of low amount of missingness and the purpose 
being illustrating the fitting of a Bayesian model on imputed 
data sets.
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