RSA's Code of Conduct

At the RSA Meeting, you agree to:

- Respect people & their space
- Respect confidentiality & privacy
- Look out for each <code>qthpfige</code> something? Say something.

These behaviors DO NOT belong at the RSA Meeting:

- Sexual harassment, of any kind, including unwelcome attention & inappropriate physical contact
- Racism, sexism, heterosexism, any discriminatory behavior
- Being disruptive or threatening anyone

RSA Anti-harassment Statement

https://tinyurl.com/RSAAntiHarass23

Andrea Howard (Carleton University) Andrea Wycoff (University of Missouri) Kevin King (University of Washington) Jonas Dora (University of Washington)

Katie Witkiewitz (University of New Mexico)

Negative Alcohol use/ affect **Cannabis use** Day 1 Day 30 Baseline -0

The affect regulation hypothesis is dead, long live the affect regulation hypothesis(?)

The affect regulation hypothesis is dead, long live the affect regulation hypothesis(?)

Andrea Howard (Carleton University) Andrea Wycoff (University of Missouri) Kevin King (University of Washington) Jonas Dora (University of Washington)

Katie Witkiewitz (University of New Mexico)

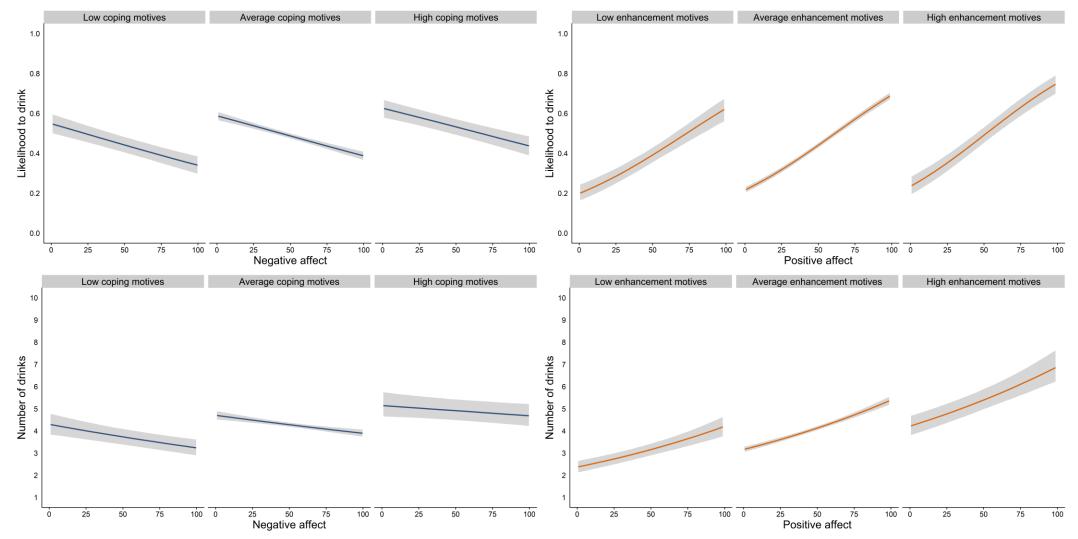
- The idea of affect regulation is omnipresent in our field/at RSA
- Over the past 20 years, NIAAA has invested ~\$200,000,000 into research grants that include the term 'affect regulation' in the title or abstract (according to NIH RePORTER)
- Multiple different lines of research support affect regulation theory (qualitative, cross-sectional, longitudinal, experimental)
- EMA research so far really doesn't...this is quite problematic in our opinion

Testing the robustness of daily associations of affect with alcohol and cannabis use

accepted-in-principle as Stage 1 Registered Report at JOPACS

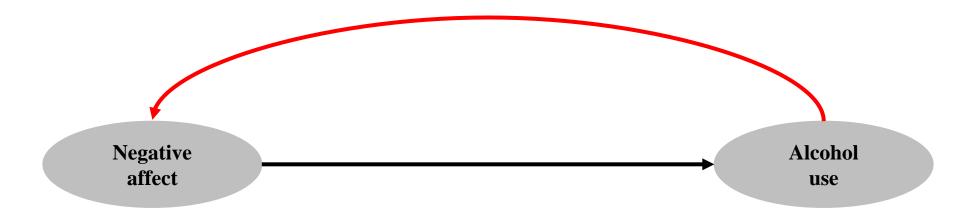
Jonas Dora, Adam Kuczynski, Connor McCabe, Kasey Creswell, Robert Dvorak, Andrea Howard, Megan Patrick, Yuichi Shoda, Gregory Smith, Aidan Wright, & Kevin King

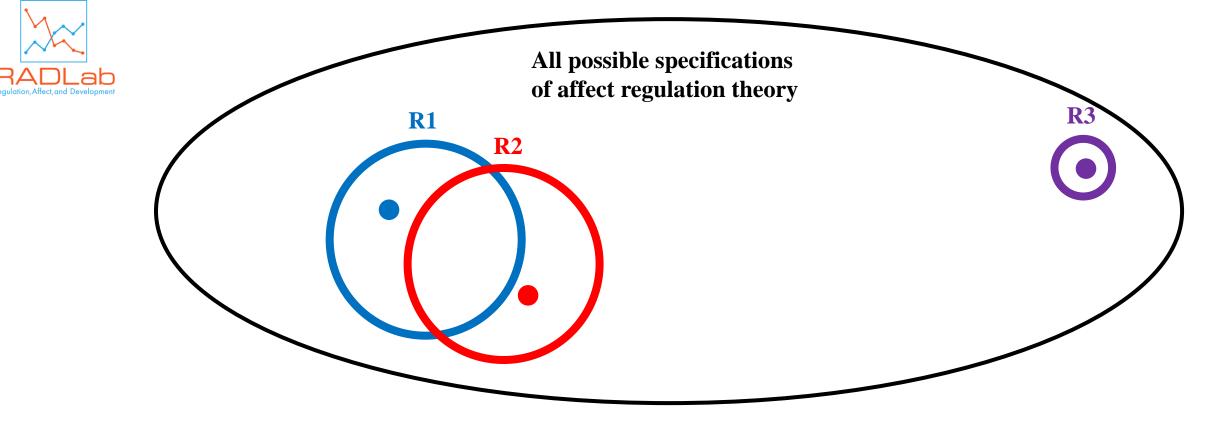
. . .


Project SMS (R01DA047247)

- N = 496 young adults recruited from the broader Seattle area
 - 18-22 years old
 - Inclusion: At least weekly alcohol/cannabis use
 - $m_{AUDIT} = 7.65; m_{CUDIT} = 7.45$
- 32 days (Thursday-Sunday) of EMA (5x/day)
 - Reported alcohol/cannabis use in the morning
 - Planned missingness design for assessment of emotions

	Nega	tive affect		Positive affect					
Anger	Sadness	Anxiety	Distress	Joviality	Attentiveness	Serenity			
Angry	Unhappy	Anxious	Upset	Нарру	Alert	Calm			
Irritated	Sad	Afraid	Distressed	Cheerful	Attentive	Relaxed			
Hostile	Blue	Nervous	Guilty	Delighted	Determined	At ease			
				i i					


Affect regulation of alcohol use



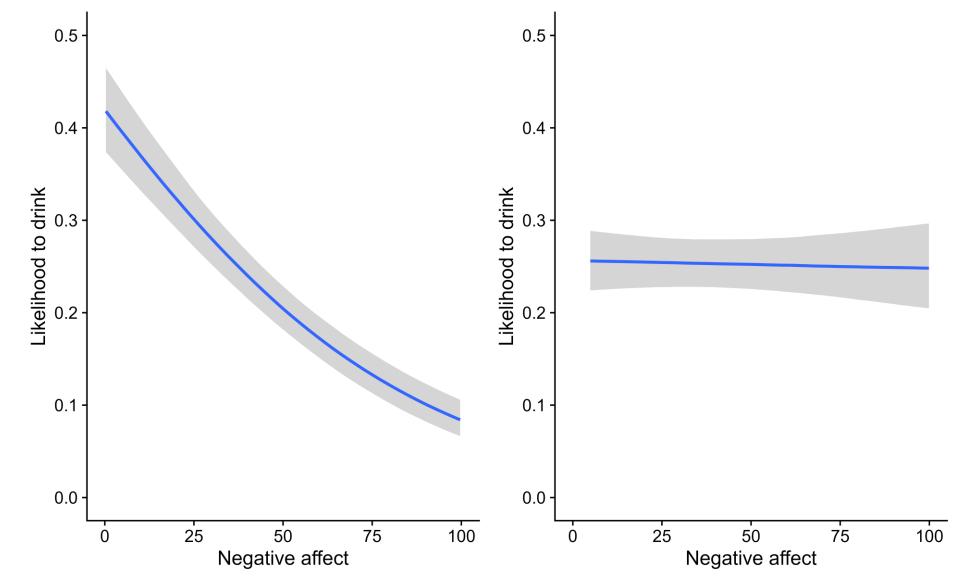
. . .

Affect regulation of alcohol use? What is it?

- How to operationalize negative affect? When to measure it?
- How to compute negative affect?
- Should this association be moderated?

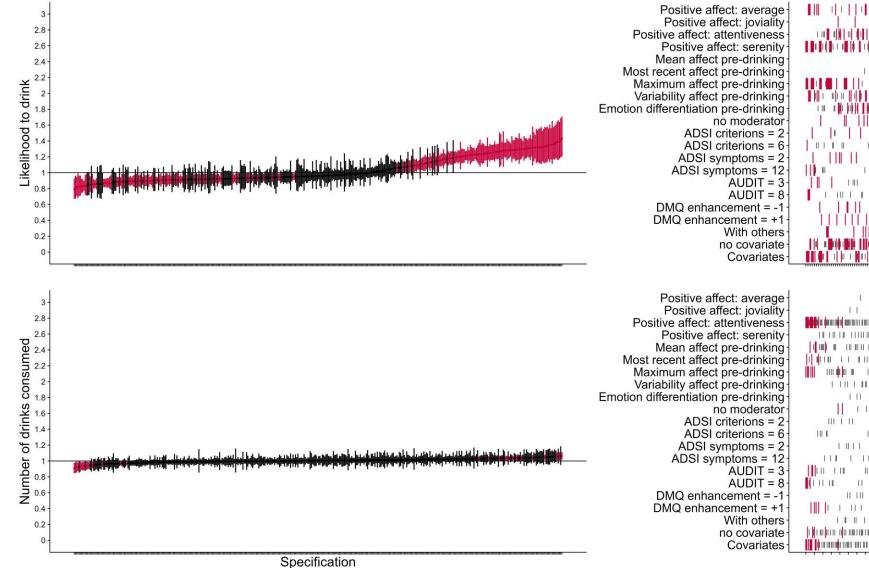
Decision	Meta-analysis	Valid, non-redundant specifications				
(1) How to operationalize negative affect?	Average of all assessed negative emotion items	Anger, anxiety, sadness, distress				
(2) How to compute negative affect?	Mean across all EMA surveys reported prior to onset of drinking	Maximum, most recent, variability, emotion differentiation				
(3) Should this association be moderated?	No, drinking motives	AUD criterion count, AUD symptom count, AUDIT score, social context				
(4) Should we statistically control for covariates of substance use?	No	Yes				

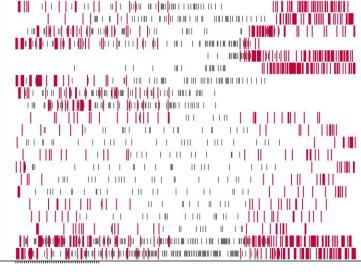
Negative affect: average 3 Negative affect: anger 1 2.8 Negative affect: anxiety Negative affect: sadness 2.6 Negative affect: distress 2.4 Mean affect pre-drinking Likelihood to drink 1't 1't 1't Most recent affect pre-drinking Maximum affect pre-drinking 1111 11 Variability affect pre-drinking Emotion differentiation pre-drinking no moderator ADSI criterions = 2ADSI criterions = 611 11 ADSI symptoms = 2 ADSI symptoms = 12 1 11 AUDIT = 30.8 AUDIT = 8 1 111 11 11 0.6 DMQ coping = -1 0.4 DMQ coping = +1Alone 0.2 i **dal kili ili ki kici da nda b**i kili da milaki in na bi mila no covariates C Covariates Negative affect: average 3 Negative affect: anger 2.8 Negative affect: anxiety 11 101 101 Negative affect: sadness 2.6 Negative affect: distress 111 111 Mean affect pre-drinking II III Most recent affect pre-drinking Maximum affect pre-drinking Variability affect pre-drinking THE Emotion differentiation pre-drinking no moderator ADSI criterions = 2 1 111 11 ADSI criterions = 6 ADSI symptoms = 2 ADSI symptoms = 12 AUDIT = 3 1 1 101 1 AUDIT = 8 DMQ coping = -10.4 DMQ coping = +1Alone 11 11 11 0.2 no covariates Covariates


Specification Curve Analysis

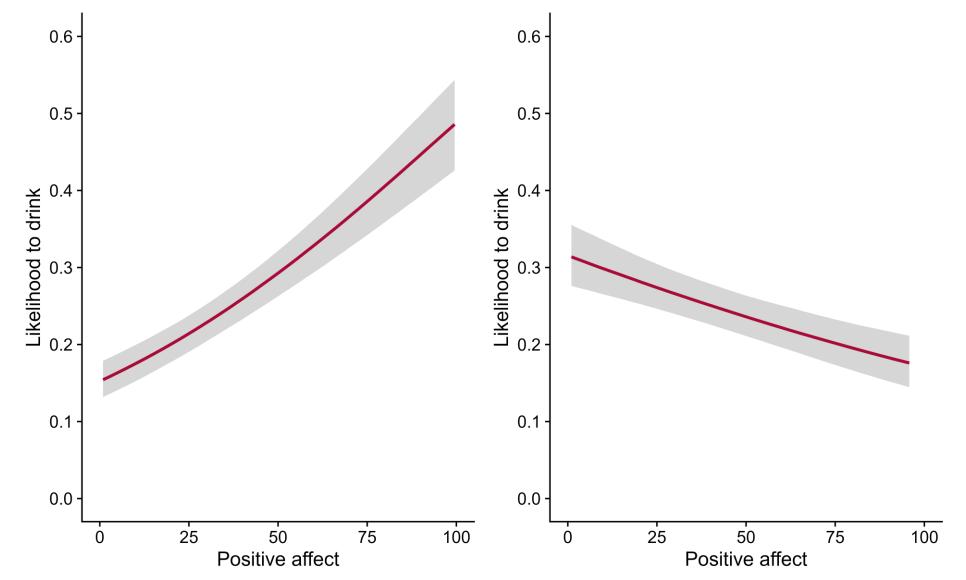
Specification

Specification



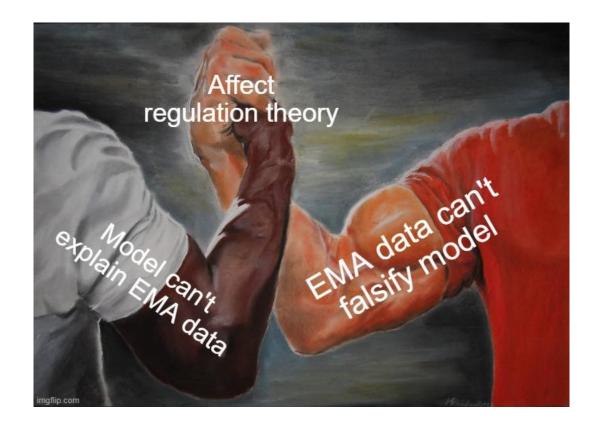

Specification Curve Analysis

Specification Curve Analysis

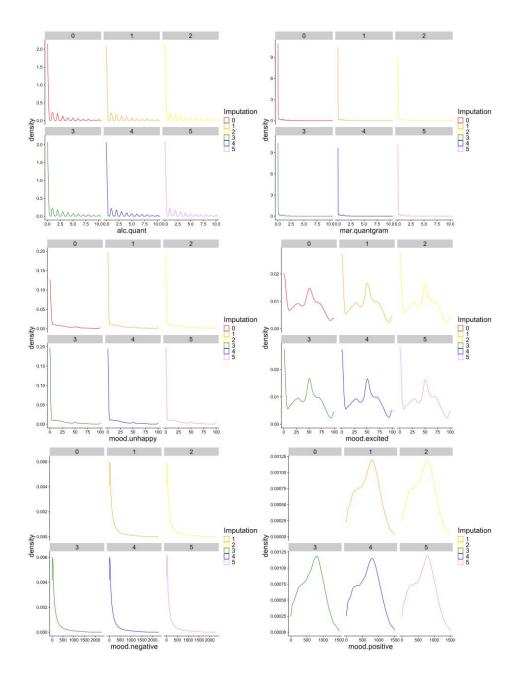


Long			1.0	ти	0.00	тен	mm	111	THE.	1.00			1.00	101		l colu	4 0 [00]	nll
age -			11														1 1 11 1 1	
ality -			111															
ess	het in in a stid of											T.			1		П	
nity -					1111			101		111	11.11						-	L I
king	1 18 8 11		11	11.1	1	1	1 1	1	11	11	- 11	11-1	1111		T II		1	
king -														111	1111			11
king	. M	II 1	I III .		111	111	I	Ê Û	Ш	1	11.1			111	L L I	ГĹТ		11
king		1 11 1	1	- 1	11	ΕΠ			i	ΓT			111		111			II II
king		III I	1111								11 11	111						
ator-	11	1.11	Ш		11	111	1111	- 31	1		1 1		1 1	11				
= 2	11 1 1	T	11			11	11		Ш	Ш	ΓĒ	III	EIIT -	11	Ш	1 1	11	
= 6 -	111.1	Ш	I.			Ê.	I		1 1	Ш	1.1	Ш	II I II	1	1111	1 111		(L
= 2	1.11	 	11	1	Ш	1	Ĩ.	I	11 1		11	111	1		111	111	11	
12	1.1.1	1.11	1			L		Ш			1.1			1111	-L	111.1	11 11	11.11
= 3		11	1	11	111	- I				1	11	I I	II I	1.1			E III E	E
= 8 -	1 11 11	11	1	1 1	III	- E		1	П	1	1.1	111	1 1		Ľ	E	1111	11
= -1 -			11				1111	- 1	1	11	1111		11	111		11	1	
+1	 	11.1	- I	11	11	Ш	1	11	1	Ш		1	11	Η	- 1	11	11	1
ers-	1.1													E II				
iate -												11 11			III I	1111		111
tes-	. III i karana karan		Ш													u) u i i i		цŲ


Specification



Specification Curve Analysis



Acknowledgments

• RADLab: Diego Moss, Katherine Seldin, Megan Schultz, Michele Smith, Adam Kuczynski, + many others

- R01DA047247 (King)
- K02AA028832 (King)
- R01AA030744 (King, Wright, Dora)
- K99AA030591 (Dora)

